|
|||||
Disciplina asociada:Inteligencia Artificial |
|||||
Escuela:
Ingeniería y Ciencias
|
|||||
Departamento Académico:
Computación
|
|||||
Programas académicos: |
|||||
Requisitos:No tiene. |
|||||
Equivalencia:IA99121 ; TF95173 |
|||||
Intención del curso en el contexto general del plan de estudios: |
|||||
Objetivo general de la Unidad de Formación: |
|||||
Repaso de retropropagación, mejoras a retropropagación. Redes basadas en funciones radiales. Máquinas de Boltzmann: optimización, aprendizaje, teoría de campo medio. Teoría de resonancia adaptable: ART binario, ART continuo, ART difuso. Aprendizaje por recompensa: diferencias temporales, aprendizaje Q, aprendizaje genético. Procesamiento temporal. Aplicaciones. | |||||
Técnica didáctica sugerida: |
|||||
No especificado | |||||
Bibliografía sugerida: |
|||||
LIBROS DE TEXTO: * Príncipe, J. C. (José C.), Neural and adaptive systems : fundamentals through simulations / José C. Principe, Neil R. Euliano, W. Curt Lefebvre, New York : New York : Wiley, 2000, 2000, eng, 0471351679 (paper) * Haykin, Simon S., Neural networks : a comprehensive foundation, 2nd ed, New Jersey : Upper Saddle River, N.J. : Prentice Hall, 1999, eng, 0132733501 * Aarts, E. y Korst, J., Neural networks for control. Simulated annealing and Boltzmann machines: A stochastic approach to combinatorial optimization and neural computing, New York : John Wiley, 1990, |
|||||
Perfil del Profesor: |
|||||
(110101)Doctorado en Ciencias Computacionales/de Información ; (110102)Doctorado en Inteligencia Artificial /Robótica ; (110701)Doctorado en Ciencias Computacionales CIP: 110101, 110102, 110701 |
|||||
|
|||||
Discipline:Artificial Intelligence |
|||||
School:
Engineering and Sciences
|
|||||
Academic Department:
Computing
|
|||||
Programs: |
|||||
Prerequisites:None. |
|||||
Equivalences:IA99121 ; TF95173 |
|||||
Course intention within the general study plan context: |
|||||
Course objective: |
|||||
Back propagation review, improvements to back propagation. Radial basis neural networks. Boltzmann machines: optimization, learning, mean field theory. Adaptive resonance theory: binary ART, continuous ART, fuzzy ART. Reinforcement learning: temporal differences, Q learning, genetic learning. Time processing. Applications. | |||||
Teaching and learning tecniques: |
|||||
Not Specified | |||||
Suggested Bibliography: |
|||||
TEXT BOOKS: * Príncipe, J. C. (José C.), Neural and adaptive systems : fundamentals through simulations / José C. Principe, Neil R. Euliano, W. Curt Lefebvre, New York : New York : Wiley, 2000, 2000, eng, 0471351679 (paper) * Haykin, Simon S., Neural networks : a comprehensive foundation, 2nd ed, New Jersey : Upper Saddle River, N.J. : Prentice Hall, 1999, eng, 0132733501 * Aarts, E. y Korst, J., Neural networks for control. Simulated annealing and Boltzmann machines: A stochastic approach to combinatorial optimization and neural computing, New York : John Wiley, 1990, |
|||||
Academic credentials required to teach the course: |
|||||
(110101)Doctoral Degree in Computer/Information Sciences and (110102)Doctoral Degree in Artificial Intelligence/Robotics and (110701)Doctoral Degree in Computational Sciences CIP: 110101, 110102, 110701 |
|||||