|
|||||
Disciplina asociada:Inteligencia Artificial |
|||||
Escuela:
Ingeniería y Ciencias
|
|||||
Departamento Académico:
Computación
|
|||||
Programas académicos: |
|||||
Requisitos:No tiene. |
|||||
Equivalencia:No tiene. |
|||||
Intención del curso en el contexto general del plan de estudios: |
|||||
Objetivo general de la Unidad de Formación: |
|||||
El objetivo general de este curso es que los alumnos sean capaces de llevar a cabo las fases iniciales en el desarrollo de una aplicación real que integre técnicas de inteligencia artificial, evaluando diferentes alternativas de solución y analizando la factibilidad de esas alternativas. | |||||
Técnica didáctica sugerida: |
|||||
No especificado | |||||
Bibliografía sugerida: |
|||||
LIBROS DE TEXTO: * Freeman, James A., Neural networks: algorithms, applications, and programming techniques, Reading, Mass.: Addison-Wesley, 1991, 201513765 * Russell, Stuart J. (Stuart Jonathan), Artificial intelligence : a modern approach, 2nd ed., Englewood Cliffs, N.J. : Prentice Hall/Pearson Education., 2003, 137903952 * Goldberg, David E. (David Edward), Genetic algorithms in search, optimization, and machine learning, Massachusetts : Reading, Mass. : Addison-Wesley Pub. Co., 1989, eng, 0201157675 |
|||||
Perfil del Profesor: |
|||||
(110102)Maestría en Inteligencia Artificial /Robótica ; (110102)Doctorado en Inteligencia Artificial /Robótica ; (110701)Maestría en Ciencias Computacionales ; (110103)Maestría en Tecnología de la Información/Informática/Sistemas Computacionales ; (110701)Doctorado en Ciencias Computacionales ; (110103)Doctorado en Tecnología de la Información/Informática/Sistemas Computacionales CIP: 110102, 110701, 110103 Experiencia recomendada: En el desarrollo de proyectos. |
|||||
|
|||||
Discipline:Artificial Intelligence |
|||||
School:
Engineering and Sciences
|
|||||
Academic Department:
Computing
|
|||||
Programs: |
|||||
Prerequisites:None. |
|||||
Equivalences:None. |
|||||
Course intention within the general study plan context: |
|||||
Course objective: |
|||||
The general aim of this course is that the students be able to carry out the initial stages in the development of a real application which integrates artificial intelligent techniques, evaluating different options of solutions and analyzing the feasibility of those options. | |||||
Teaching and learning tecniques: |
|||||
Not Specified | |||||
Suggested Bibliography: |
|||||
TEXT BOOKS: * Freeman, James A., Neural networks: algorithms, applications, and programming techniques, Reading, Mass.: Addison-Wesley, 1991, 201513765 * Russell, Stuart J. (Stuart Jonathan), Artificial intelligence : a modern approach, 2nd ed., Englewood Cliffs, N.J. : Prentice Hall/Pearson Education., 2003, 137903952 * Goldberg, David E. (David Edward), Genetic algorithms in search, optimization, and machine learning, Massachusetts : Reading, Mass. : Addison-Wesley Pub. Co., 1989, eng, 0201157675 |
|||||
Academic credentials required to teach the course: |
|||||
(110102)Master Degree in Artificial Intelligence/Robotics and (110102)Doctoral Degree in Artificial Intelligence/Robotics and (110701)Master Degree in Computational Sciences and (110103)Master Degree in Information Technology. and (110701)Doctoral Degree in Computational Sciences and (110103)Doctoral Degree in Information Technology. CIP: 110102, 110701, 110103 |
|||||