|
|||||
Disciplina asociada:Ingeniería Industrial |
|||||
Escuela:
Ingeniería y Ciencias
|
|||||
Departamento Académico:
Ingeniería Industrial
|
|||||
Programas académicos: |
|||||
Requisitos:(Haber Aprobado MA4009) |
|||||
Equivalencia:IN4006 ; IN99145 |
|||||
Intención del curso en el contexto general del plan de estudios: |
|||||
Curso de nivel avanzado que tiene como intención desarrollar en el alumno la habilidad de conducir pruebas experimentales con la finalidad de analizar, y comprender los diferentes factores que impactan en la calidad de los procesos. Requiere conocimientos previos de pronósticos y análisis de regresión. Como resultado del aprendizaje el alumno propondrá cambios en las variables del proceso para prevenir problemas y mejorar la calidad de los productos. |
|||||
Objetivo general de la Unidad de Formación: |
|||||
Al finalizar el curso el alumno será capaz de: - Conocer los modelos de experimentos más comunes. - Analizar los supuestos de validación del modelo. - Aplicar los conceptos aprendidos en el curso en casos de estudios o problemas cotidianos de la industria. |
|||||
Técnica didáctica sugerida: |
|||||
No especificado | |||||
Bibliografía sugerida: |
|||||
LIBROS DE TEXTO: * Box, George E. P., Statistics for experimenters: Design, innovation, and discovery, 2nd. Edition, Hoboken, N. J.: Wiley-Interscience, 2005, 0471718130 (papel no a´cido), 9780471718130 (papel no a´cido) LIBROS DE CONSULTA: * Montgomery, Douglas C., Design and analysis of experiments, c2009., Wiley,, eng, * Neter, John., Applied linear statistical models : bregression, analysis of variance, and experimental designs, c1990., Irwin,, eng, |
|||||
Perfil del Profesor: |
|||||
(143501)Doctorado en Ingeniería Industrial ; (143601)Doctorado en Ingeniería de Manufactura ; (143701)Doctorado en Investigación de Operaciones ; (270101)Doctorado en Matemáticas ; (270501)Doctorado en Estadística CIP: 143501, 143601, 143701, 270101, 270501 |
|||||
|
|||||
Discipline:Industrial Engineering |
|||||
School:
Engineering and Sciences
|
|||||
Academic Department:
Industrial Engineer
|
|||||
Programs: |
|||||
Prerequisites:( MA4009) |
|||||
Equivalences:IN4006 ; IN99145 |
|||||
Course intention within the general study plan context: |
|||||
Advanced level course that is intended to develop in students the ability to conduct experimental tests in order to analyze and understand the different factors that impact the quality of processes. Requires knowledge on forecast and regression analysis. As a result, students will be proposing changes in the process variables to prevent problems and improve product quality. |
|||||
Course objective: |
|||||
At the end of the course the student will be able to: - Acquire knowledge of the most common types of studies. - Validate assumptions of the model. - Apply the concepts learned during the class to case studies or day-to-day problems found in industry. |
|||||
Teaching and learning tecniques: |
|||||
Not Specified | |||||
Suggested Bibliography: |
|||||
TEXT BOOKS: * Box, George E. P., Statistics for experimenters: Design, innovation, and discovery, 2nd. Edition, Hoboken, N. J.: Wiley-Interscience, 2005, 0471718130 (papel no a´cido), 9780471718130 (papel no a´cido) BOOKS FOR CONSULTATION: * Montgomery, Douglas C., Design and analysis of experiments, c2009., Wiley,, eng, * Neter, John., Applied linear statistical models : bregression, analysis of variance, and experimental designs, c1990., Irwin,, eng, |
|||||
Academic credentials required to teach the course: |
|||||
(143501)Doctoral Degree in Industrial Engineering ; (143601)Doctoral Degree in Manufacturing Engineering ; (143701)Doctoral Degree in Operations Research ; (270101)Doctoral Degree in Mathematics ; (270501)Doctoral Degree in Statistics CIP: 143501, 143601, 143701, 270101, 270501 |
|||||